
 1

Visualization of Binary Decision Diagram

1. Contents

1. Contents ... 1
2. Introduction ... 2
3. Background and Related Work ...
4. Motivation and Objective ..
5. Visualization Infrastructure ..
6. Package Description ...
7. Results ..
8. Conclusions and Future Directions ...
9. References ..
10. Appendices ...

 2

1. Introduction

 3

2. Background and Related Work

2.1 Formal Definition of Binary Decision Diagram

A Binary Decision Diagram (BDD) [BRY86] is a rooted, directed acyclic graph (DAG),
G(V,E). The vertex set is made up two different types of vertices, terminal and non-
terminal. Each BDD has one or two terminal vertices with out-degree zero, and multiple
non-terminal vertices. A terminal vertex v, has attribute value(v)∈ {0,1} . A non-terminal
vertex v has attribute index(v) ∈ {1,2,..,n} and two children low(v), high(v) ∈ V. The
non-terminal vertex attribute index(v) implies a linear ordering of the variable ordering of
the BDD, and it satisfies the property such that for any non-terminal vertex v, index(v) <
{ index(low(v)), index(high(v)) }.

A Reduced Binary Decision Diagram (ROBDD) is a BDD with two additional
constraints. Before we introduce these constraints, we will review the definition of
isomorphic sub-graphs. Two sub-graphs rooted at v and w, G'(v) and G''(w) respectively
are isomorphic if there exists a one-to-one mapping σ, from the vertices in G'(v) and
G''(w) such that for every vertex v' in G', there is a vertex w' = σ(v') which satisfies the
following condition; either both v' and w' are terminal vertices with value(v') = value(w')
or v' and w' are both non-terminal vertices with index(v') = index(w'), σ(low(v')) =
low(w') and σ(high(v')) = high(w'). The above-mentioned constraints are presented as
such; for G(V,E) to qualify as an ROBDD, there is no vertex v ∈ V such that low(v) =
high(v) nor does G(V,E) contain two distinct vertices v and w such that the sub-graphs
rooted at v and w are isomorphic. For the rest of this report, BDD and ROBDD are used
interchangeably to denote ROBDD unless stated otherwise.

A BDD rooted at vertex v, which denotes a function fv is defined recursively as such;
• If v is a terminal vertex such that value(v) = 0, fv = 0, else If v is a terminal vertex

such that value(v) = 1, fv = 1
• If v is a non-terminal vertex such that index(v) = i, then fv = xi fhigh(v) + xi' flow(v) .

The definition given above describes a bottom-up construction of a BDD. It is also
descriptive to provide a top-down definition of BDD as representation of Boolean
function based on Shannon's Decomposition Theorem, which states that

 f = xi . fxi + xi' . fxi'
where fxi and fxi' are f evaluated at xi = 1 and xi = 0 respectively. This theorem allows us to
associate a unique Boolean function with each vertex in the BDD G(V,E) such that the
root of G represents the main function for which the BDD was constructed, and every
other vertex is defined such that high(f) = fxi and low(f) = fxi'. Furthermore, if v is the
node that is associated with the function f stated above, index(v) = i.

Shannon's decomposition theorem also provides the foundation for the recursive if-then-
else (ite) [BRB90] formulation of BDD. The ite operator is defined as follows

 ite(f,g,h) = f.g + f'.h

 4

where f, g, h are arbitrary Boolean functions. It is a well-known fact that ite operator can
be used to implement all Boolean functions which operate on 2 variables, as shown in
Table 1.

Table Name Expression Equivalent

Form
0000 0 0 0
0001 AND(f,g) f.g ite(f,g,0)
0010 f > g f.g' ite(f,g',0)
0011 f f f
0100 f < g f'.g ite(f,0,g)
0101 g g g
0110 XOR(f,g) f ⊕g ite(f,g',g)
0111 OR(f,g) f + g ite(f,1,g)
1000 NOR(f,g) (f + g)' ite(f,0,g')
1001 XNOR(f,g) (f ⊕g)' ite(f,g,g')
1010 NOT(f,g) g' ite(g,0,1)
1011 f ≥ g f + g' ite(f,1,g')
1100 NOT(f) f' ite(f,0,1)
1101 f ≤ g f' + g ite(f,g,1)
1110 NAND(f,g) (f.g)' ite(f,g',1)
1111 1 1 1
Table 1. Two Argument Operators Expressed in terms or ite

Let Z = ite(f,g,h) and let v be the top variable of functions f, g, h. Then

Z = ite(f,g,h)
 = v.Zv + v'.Zv' (Shannon Decomposition Theorem)
 = v.(f.g + f'.h)v + v'.(f.g + f'.h)v'
 = v.(fv.gv + f'v.hv) + v'.(f v'.g v' + f' v'.h v')
 = ite(v, ite(fv,gv,hv), ite(fv',gv',hv'))

The terminal cases of this recursion are:
 ite(1,f,g) = ite(0,g,f) = ite(f,1,0) = ite(g,f,f) = f

The pseudo-code for ite-based algorithm is presented in Appendix XXX .

2.2 Analysis of BDD packages

We will now investigate some important issues that have to be considered when
implementing an efficient BDD package [BRB90], in terms of both memory and CPU
requirements. The most efficient and hence popular implementation of a BDD package is
based on the recursive ite formulation of BDDs described in Section 2.1 above. Table 2
summarizes some important fundamental concepts and data structures used in these
implementations.

 5

Concepts and
Data Structures

Brief Description and Analysis

Shared BDD • A multiple-output Boolean function is represented as a single
multi-rooted BDD with a root for each function that we are
explicitly interested in.

• This concept is justified by the assumption that different Boolean
functions have many common sub-expressions, and representing
these sub-expressions using one sub-graph rather than multiple
identical sub-graphs reduces memory requirements.

Unique Table • A dictionary of all functions represented in the current DAG.
• Implemented as a Hashtable with collision chains.
• (key, object) of the Hashtable is ((index(v), low(v), high(v)) , *v)

such that *v is the pointer to a BDD vertex.
• Collision chain is implemented as an additional entry in the BDD

vertex data structure.
• Guarantee that at any time there is no isomorphic (sub)graphs in

the DAG. Maintains strong canonicity such that any two
equivalent function always share the same sub-graph.

Computed
Table

• Implemented as a Hash-based Cache.
• Stores results of recent computations , i.e. informs the package if

a certain ite(f,g,h) has recently been computed - and if so return
the resultant vertex which represents the function result =
ite(f,g,h).

• Reduces the complexity of the ite recursions from exponential in
the size of input variables to polynomial in the size of operand
sub-graphs.

BDD vertex

• Can be efficiently implemented using as few as 4 memory word*.
reference-count || index(v), * high(v), *low(v) and *next

• *next implements the collision chain of the Unique Table
• reference-count variable will be discussed in conjunction with

garbage collection
• Each vertex v, represents a distinct Boolean function

f(xi,xi+1,..,xn) where index(v) = i.

Garbage
Collection

• Automatic garbage collection is based on the reference-count
variable introduced above. When an upper threshold of BDD
vertices have reference-count = 0, this mechanism is invoked
which released the memory occupied by these dead vertices, and
appropriately update (or rehash if necessary) the computed table
and the unique table.

• The reference-count of a vertex v maintains the sum of all other
BDD vertices or user-defined functions which reference v. v is a

 6

dead vertex if its reference-count is zero.
• The CPU cost garbage collection is amortized over all vertices

which are freed.

2.3 Variable Ordering of BDDs

A BDD is essentially an effort to arrive at an optimal trade-off between efficient memory
usage for representing Boolean functions and effective algorithmic (in terms of time-
complexity) to manipulate these functions. The effectiveness of BDD manipulation
algorithms is directly related to the size of the BDD DAGs. Based on the definition of
BDD, it is easy to see that the size of its DAG and hence the complexity of its algorithms
are exponential in the worst case - this problem is commonly referred to as the "memory
explosion" problem. However, in many practical cases, we can find good variable
orderings for which the resultant BDDs have sizes that are polynomial in the number of
its input variables. Figure XXX illustrates the importance of a good variable ordering for
BDDs. (draw the figure after I have coded in the BDD-dump with software control stuff
- look at pg 296 Symbolic Boolean ... Bryant paper)

Figure XXX shows the BDDs of the function f = a1b1 + a2b2 + a3b3 under two different
BDD variable orderings. The first ordering a1 < b1 < a2 < b2 < a3 < b3, produces a BDD
which is linear in the number of its input variables whereas the second a1 < a2 < a3 < b1 <
b2 < b3 produces a BDD which is exponential in the number of its input variables.

Unfortunately the problem of finding an optimal variable ordering is co-NP complete
[FS87].

In order for BDD to be efficient, we need to avoid the variable orderings that results in
exponential BDDs. [BYR86] have shown that for ALU func63 0 0 1 384.84 464.24 Tm
(3)Tj
/R12 11.6798 Tf
0.999435 0 0 1 388.8 465.8 T3oestn oofero-ool he

le e orHocofor
wh86in the BDD whic ym whetiavoid the sizulof iamaofasflut he8DDs. .292 0 Td
()Tj
2.88163 0 Td
(t)Tj
3.24183 0 Td
(h)Tj
5.880017 0 Td
(t)Tj
3.24183 0 Td
(e)Tj
5.1332 0 Td
(e)Tj
5.16163 0 Td
()Tj
2.88163 0 Td
(B)Tj
7.92448 0 Td
(r)Tj
4.08’32 0 Td
(t)Tj
3.24326 0 Td
(e)Tj
5.16366 0 Td
(8)Tj
5.88183 0 Td
(r)Tj
3.84217 0 Td
(o)Tj
5.88332 0 Td
()Tj
3.0017 0 Td
(t)Tj
3.248332 0 Td
(e)Tj
5.16292 0 Td
(r)Tj
3.8332 0 Td
(e)Tj
5.16292 0 Td
(e)Tj
5.16292 0 Td
(d)Tj
5.88217 0 Td
()Tj
2.88163 0 Td
(f)Tj
3.84183 0 Td
(r)Tj
3.84217 0 Td
(a)Tj
5.168332 0 Td
()Tj
3.0183 0 Td
(v)Tj
5.88332 0 Td
(e)Tj
5.16292 00 Td
(a)Tj
5.16292 0 Td
(t)Tj
3.3619 0 Td
(e)Tj
5.04285 0 Td
(s)Tj
4.56258 0 Td
()Tj
3.0017 0 Td
(t)Tj
3.24183 0 Td
(h)Tj
5.88332 Td
(X)Tj
8.52482 0 Td
(X)Tj
8.40017 0 Td
(i)Tj
3.24183 0 Td
(m)Tj
9.00509 0 Td
(i)Tj
3.24183 0 Td
(n)Tj
6.0217 0 Td
(a)Tj
5.166292 0 Td
()Tj
3.0017 0 Td
(s)Tj
4.56258 0 Td
(i)Tj
3.24183 0 Td
(z)Tj
5.16292 0 Td
(e)Tj
5.168163 0 Td
(t)Tj
3.24183 0 d
(e)Tj
5.168332 0 Td
(e)Tj
5.1292 0 Td
()Tj
2.88Td
(b)Tj
5.88332 0 Td
(l)Tj
3.24183 0 Td
(e)Tj
5.16292 0 Td
()Tj
-382.536 -13.44 Td
(o)Tj
5.88332 0 Td
(r)Tj
3.84217 0 Td
(d)Tj
5.76326 0 Td
(e)Tj
5.1326 0 Td
(b)Tj
5.88332 0 Td
(l)Tj
3.2163 00290 T0Tj
5.16292 0 Td
(s 330.24 49Rj
40 Td
(t)Tj
3.2Td
()Tj
-382.536 -332 0 Td
(i)Tj
3.24292 0 Td
(f)Tj
3.96224 0 Td
(f)Tj
3.8463 0 Td
(()Tj
3.84217 0 Td
(s)Tj
4.56258 0 Td
(i)Tj
3.24183 0 Td
(z)Tj
5.16292 0 Td
(e)Tj
5.168163 0 Td
(t)Tj
3.3619 0 Td
(h)Tj
5.88332 0 Td
(e)Tj
5.16292 0 Td
()Tj
2.8816292 0 Td
(b)Tj
5.76326 0 Td
(l)Tj
3.3619 0 Td
(e)Tj
5.04285 0 Td
()Tj
3.0017 0 Td
(o)Tj
5.88332 0 Td
(r)Tj
3.84217 0 Td
(d)Tj
5.76326 0 d
(e)Tj
5.16292 0 Td
(d)Tj
5.88332 0 Td
()Tj
2.88619 0 Td
(t)Tj
3.24183 0 Td
(s)Tj
4.56258 0 Td
()Tj
2.88163 0 Td
(a)Tj
5.16292 0 Td
(l)Tj
3.3619 0 Td
(g)Tj
5.64319 0 Td
(o)Tj
5.88332 0 Td
(r)Tj
5.16292 0 Td
(r)Tj
3.84…d
(s Td
46)Tj
5.16292 0Td
(a)Tj
5.16292 0 Td
(p)Tj
6.00339 0 Td
(e)Tj
5.16292 0 Td
(r)Tj
3.96224 0 87.692
/R12 Tf
0.99940 Td
(D)Tj
8.40475 0 Td
(D)Tj
8.40475 0 Td
(s)Tj
4.56258 0 Td
(.)Tj
3.0017 0 Td
()T87.692 Tm
2 Tf
0.999463 0 0 1 114.7163 0 Td
(X)Tj
8.52482 0 Td
(X)Tj
8.52482 0 T3.617 -13.44 Td
()Tj
(U)'
8.40475 0 Td
(n)Tj
5.88.999463 0 0 1 114.72 423.92 Tm
(3)Tj
/509 0 Td
(a)Tj
5.16292 0 Td
(l)Tj
3.24326 0 Td
(s)Tj
4.564183 0 Td
(s)Tj
4.58163 0 Td
(.)Tj
3.0183 0 Td
(h)Tj
5.882 423.92 Tm
(3)Tj
/163 0 Td
(w)Tj
8.40475 0 Td
(h)Tj
5.88258 0 Td
(i)Tj
3.24183 0 Td
(z)Tj
5.16292 0 Td
(e)Tj
5.16258 0 Td
()Tj
2.88163 0 TTj
5.16292 00339 0 Td
(g)Tj
5.64319 0 d
(s)Tj
4.5684217 0 Td
(N)Tj
8.52482 0 Td
(P)Tj
6.3636 0 d
(a)Tj
5.16292 0 Td
(n)Tj
5.88292 0 Td
(o)Tj
5.88332 0 Td
(r)Tj
3.96224 0 Td
(i)Tj
3.24183 0 Td
(a)Tj
5.88163 0 Td
(t)Tj
3.3619 0 Td
(h)Tj
5.76326 0 Td
(e)Tj
5.1332 0 Td
(t)Tj
3.24183 0 Td
()Tj
2.88163 0 TTj
(U)'
8.40475 0 Td
(n)Tj
5.76326 0 Td
(a)Tj
5.16292 0 Td
(a)Tj
5.16292 0 Td
(s)Tj
4.568332 0 Td
(i)Tj
3.24183 0 Td
(d)Tj
5.848.54 -13.44 Td
()Tj
13.4d
(o)Tj
6.00163 0 Td
(o)Tj
5.886292 0 Td
()Tj
2.88163 0 Td
(f)Tj
3.8319 0 Td
(m)Tj
9.12516 0 Td
(b)Tj
5.76326 0 Td
(d)Tj
5.88332 0 Td
()Tj
2.88619 0 Td
(t)Tj
3.24183 0 Td
(s)Tj
4.56258 -38.1816 -13.44 Td
()Tj
(I)'
3.78332 0 Td
(m)Tj
9.00509 0 Td
(p)Tj
5.76326 0 Td
()Tj
3.0326 0 Td
(r)Tj
3.96224 0 Td
(i)Tj
3.24183 0 Td
(t)Tj
3.248.33333 0 0 cm BT
/R258 0 TTd
(f)Tj
3.86292 0 d
(w)Tj
8.40475 0 Td
(n)Tj
5.88332 0 Td
()Tj
2.88163 00 Td
(d)Tj
5.88332 0 Td
()Tj
2.8163 0 Td
(t)Tj
3.3619 0 Td
(h)Tj
5.76292 00 Td
(a)Tj
5.16292 0d
()Tj
2.88163 0 Td
(o)Tj
5.88332 0 d
(h)Tj
5.76292 00 Td
(a)Tj
5. Td
()Tj
3.0017 0 Td
(i)Tj
3.24183 0 339 0 Td
(y)Tj
5.64319 0 Td
()Tj
2.88163 0 Td
(p)Tj
6.00332 0 Td Td78t)Tj
3.3619 0 Td
(i)Tj
3.24183 0 Td
(o)Tj
5.76326 0 Td
(n)Tj
5.88332 0 Td
()Tj
-389.5 -13.44 Td
(a)Tj
5.16292 0 Td
(l)Tj
3.3619 0 Td
(g)Tj
5.64319 0 Td
(o)Tj
5.76326 0 Td
(r)Tj
3.96224 0 Td
(i)Tj
3.24? Td
(i)Tj
3.24183 332 0 0 Td
(e)Tj
5.16292 Td
(a)Tj
5.16292 0 Td
(p)Tj
6.00339 0 Td
(e)Tj
5.16292 0 Td
(r)Tj
3.96224 0 87.69224 Tf
0.99942.80.24 492j
4bwe

arxpone etuf

 pthen

latx wde d a

 7

the visualization process is described is described by a series of computation
modules (Figure XX).

Filtering: A process whereby raw data is transformed into data of “interest”.

Some examples of computation are interpolation, smoothing
operations, data extractions etc.

Mapping: A set of modules that build geometric representation of the data.
Rendering: The geometric representation of data is converted to an image that

can be displayed

Application developers pick from a library of modules, each categorized to one of
the three types above, and “wires” them together into a network. In this system, a
modules reads in data in a format which it understands and presents its output to a
subsequent module. Data flows through the network, from the filter modules,
through the mapping modules and finally to the render modules – hence the term
“data flow” architecture.

Scalar Mapping Technique

The scalar mapping technique [HDB92] introduced by Hibbard et al performs
visualization of a data-set based on user-defined mapping functions σi (s). Before
we define these mapping functions, we will discuss some fundamental concepts of
this visualization system. The system defines a finite set of primitive data types.
All primitive data types are scalar types. However, the system provides a
mechanism for user to specify data types as a hierarchical composition of
elements from the set of system primitives. Graphical display as well as user
interaction with the display is modeled as a special data set which is in turn
composed from a finite set of primitive display scalar types. Currently supported
primitive scalar types primitive display scalar types are included in appendix. We
will now define σi (s) as mappings from scalar types to display scalar types. These
scalar mapping functions σi (s) , provide a simple user interface for controlling
how all data types are displayed, since the graphical depiction of any object can
be derived from the them.

Data

Filter
modules

Mapping
modules

Render
modules

Display

 8

2.6 Graph Visualization Algorithms

Get the paper from the ATT website.
“A technique for drawing directed graphs”
“Applications to Graph Visualizations”

Graph visualization algorithms are formulated to draw graphs based on a few visual
principles [DOTALG]:
• Expose hierarchical structure in graphs, expose general flow of directed graphs.
• Avoid edge crossings, sharp bends and other visual analomies that do not convey

information
• Keep edges as short as possible
• Expose symmetry, parallelism, re.162 0 Td
(l)Tj
3.3619 0 Td
(i)Tj
3.24183 0 Tda.16292 0 Td
()Tj
3.0017 0 Td
(f)Tj
3.96224 0 Td
(o)Tj
5.76326 0 Td
(r)Tj
3.96224 0 Td
(m)Tj
9.00509 0 T
/R36 11.7145 Tf
0.999437 0 0 1 93 287.96 T0 Td
(m)Tj
9.073.24183 0 Td
(s)Tj
4.9622489219
(s)Tj
4.96224892
(e)Tj
5.16292 0 55i183
-379.174 -13.32 Td
(7cJTd
(e)Tj
5.04285 09.174 -13.32 Td
(7cj
5.16292 0 Td
()Tj
3.0017 0 Td
(f)Tj
3.8258 0 Td
()Tj
2.888265 0 Td
(y)Tj
5.64319 0 Td
(m)T73.24183 0 Td
(s)Tjj
3.84217 0 Td
(e)Tj
5.16292 0 Td
()T.16292 0 55i183
-37d
(m)Tj
9.00509 0 T
5.16292 0 Td
(s)Tj
4.56h
W n
q 8.33333 0 03.2 Td
(Td
(p)Tj
6.00339 0 Td
(o)Tj
5.88332 0 Td
(s)Tj
4.73/R1 0 Td
(s)Tj
4.44251 0 Td
(i)Tj
3.3619 0 Td
(b)Tj
73/R1 0 TdTd
(l)Tj
3.3619 0j
3.24183 0 Td
(t)T63 0 Td
(c)Tj
5.282 Td
(“)Tj
ET Q
0.298 G
0.298 g
q 8.333j
5.76326 0 Td
(a)Tj
5.28299 0 Td
(l)T
3.24183 0 Td
(n)Tjj
2.88163 0 Td
()j
3.0014819Tj
5.282Tj
2.88163 0 Td
(r)Tj
3.258 0 Td
()Tjj
5.16292 0 Td
(l)T.28 Td
(•)Tj
/R36 11.7145 292 0 Td
(s)Tj
4.Tda.16292 0 Tj
2.88163 0 Td
(a)Tj
5.162403011.6798 Tf
0.999435 0 0 1 1798 Tf
-164.493 -14j
5.16292 0 Td
(l)T
5.28299 0 Td
(s)Tj
4.56258 0 Td
()Tj
2.8816292 0 Td
(t)Tj
3.24183 0 Td
()Tj
3.24183 0 Td
(l))Tj
3.0017 0 Td
(b)Tj
5.017 0 Td
(a)Tj
5.16292 0 Td
(n)TTj
3.24183 0 Td
(c)Tj
5.16292 0 Td
(aj
3.84217 0 Td
(l)Tj
3.24183 0 Td
(o)Tj
5.883292 0 Td
(s)j
5.16292 0 Td
()TTj
3.3619 0 Td
(e)T33 0 0 8.33333 0 0 cm BT
/R12 11.6798j
3.0017 0 Td
(V)Tj
8.40475 0 Td
(i)Tj
3.24183 0 Td
(s)Tj
4.56258 0 Td
(u)Tj
5.88332 0 Td
(a)T)Tj
5.16292 0 Td
(r)Tj
3.84217 0 Td
(
5.88332 0 Td
()Tj
2.88163 0 Td
(b)Tj
5.76326 0 Td
(e)Tj9.174 -13.32 Td
(7cj
5.162f
0.999437 0 0 1 6292 0 Td
()Tj
5.16292 0 Td
()Tj
5.64319 0 Td
(s)T
8.40475 0 Td
(i)TjTj
5.64319 0 Td
(,)Tj
2.88163 0 Td
(j
2.88163 0 Td
()Tj
2.88163 0 Td
(r)Tj
3.8332 0 Td
(e)Tj
5.16292 0 Td
(r)Tj
3.84217 0 Td
(a)Tj
5.1163 0 Td
(s)Tj
4.56258 0 Td
(t)Tj
3.24183 0 Td
(r)TTj
3.24183 0 Td
()Tj
3.0017 0 Td
(f)T)Tj
3.0017 0 Td
(o)Tj
5.76326 0 Td
(n)Tj
3.24183 0 Td
()d
()Tj
13.44 TL
(G)'
8.40475 0 Td
(r)Tj
3.84217 0 Td
(a)j
5.16292 0 Td
(p)Tj
5.88332 0 Td
(h)j
5.64319 0 Td
(s)Tj
5.76326 0 Td
(a)Tj
5.2824 0 Td
(a)Tj
5.16292 0 Td
(w)Tj
8.40475 0 Td
(i)Tjj
5.16292 0 Td
(t)Tj
3.388163 0 Td
(i)Tj
3-3825877
(o)Tj
5.883)Tj
3(I)'3887221Td
(t)Tj
3.2417 0 Td
(f)Tj
3.96224 0 Td
(o)Tj
5.76326 0 Td
(r)Tj
4.56258 0 Td
(e)Tj
5.16292 0 Td
()Tjj
6.00339 0 Td
(r)Tj
3.84217 0 Td
(a).28 Td
(•)Tj
/R36 11.7145 Tf
0.999437
5.16292 0 Td
(w)Tj
8.40475 0 Td
(i)Tj
4.56258 0 Td
(t)T)Tj
3.3619 0 Td
(s)Tj
4.56258 0 Td
(u)Tj
5.76326 0 Td
(a)Tj
9.00509 0 Td
()Tj
2.88163 0 Td
(t)Tj
5.76326 0 Td
(l)Tj
3.3619 0 Td
(i)
5.76326 0 Td
(s)Tj
4.56258 0 Td
(e)Tj.96 T0 Td
(m)Tj
9.073.24183 0 Td
(s)Tj
4.9622489219
(s)Tj
4.9676326 0 Td
(lTj
5.88332 0 Td
(a)Tj
2.88163 0 Td
(t)Tj
3.3619 0 Td
(h)TTj
3.0017 0 Td
(f)T)Tj
3.0017 0 Td
(o)j
5.16292 0 Td
(r)Tj
3.84217 0 Td
(e)Tj
5.16292 0 Td
()Tj
5.1163 0 Td
(s)Tj
4.56258 0 Td
(t)TTj
5.88332 0 Td
(a) Td
()Tj
/R33 11.6798 Tf

(o)Tj
5.88332 0 Td
(n)Tj
5.763j
3.84217 0 Td
(e)Td
(r)Tj
3.96224 0 Td
(m)Tj
9.00509 0 TTj
3.3619 0 Td
(h)Tj
5.76326 0 Td
(a)Tj
5.1626 0 Td
(s)Tj
4.566292 0 Td
()Tj
5.16219 0 Td
(m)Tj
9.12516 0 Td
(m)Tj
9.00509 0 Td
(e)Tj
5.88332 0 Td
(w)Tj
8.40475 0 Td
()Tj
2.8892 0 Td
()Tj
4.56258 0 Td
(m)Tj
9.00532 0 Td
(d)Tj
5.88332 0 Td
()Tj
3.3619 0 Td
(h)TTj
3.0017 0 Td
(f)Tj
5.88332 0 Td
(w)T
5.16292 0 Td
(s)Tj
4.56258 0 Td
()Tjj
5.16292 0 Td
(r)Tj
3.84217 0 Td
(a)Tj
5.1163 0 Td
(s)Tj)Tj
3.0017 0 Td
(b)Tj
5.76217 0 Td
()Tj
3.0017 0 Td
(d)Tj
5.88332 0 Td
(i)Tj
3.24183 0 Td
(r)Tj
3.84217 0 Td
(e)Tj
5.16292 0 Td
(c)T)Tj
5.76326 0 Td
()Tj
3.0017 0 Td
(o)Tj
5.76326 0 Td
(n)Tj
5.88332 0 Td
()Tj
3.00163 0 Td
(o)Tj
5.88332 0 Td
(t)Tj
3.24183 0 Td
(h)Tj
5.16292 0 Td
(p)Tj
5.8326 0 Td
(h)Tj
5.88332 0 Td
()Tj
3.0017 0 Td
(V)Tj
8.52482 0 Td
(i)Tj
3.24183 0 Td
(s)Tj
4.56258 0 Td
(u)eli tio pa t an rao ea v s e •sa t e wi isu2 0 Td
(n)Tj
5.763j
3.84217 0 Td
(e)T.16292 0 55i183
-37Tj
5.88332 0 Td
(t)
5.76326 0 Td
(o)Tj
5.883392 0 Td
()T.16292 0 55i183
-37.28 Td
(•)Tj
/R36 1j
5.16292 0 Td
()Tj
3.0017 0 Td
(f)TTj
5.16292 0 Td
(r)Tj
3.84217 0 Td
(a) v gu sGggdgg

 9

This are physical limits to the number of vertices that can be visualized, explain the
difficulty with BDD, large data-set etc..

Write about the dot algorithm

2.7 Existing BDD Visualization Techniques

Currently, there is not much available in the way of BDD visualization. To our
knowledge, besides traditional text printouts for debugging purposes, the only available
utilities for the visualization of BDDs display the entire DAG using graph display
algorithms. . All systems surveyed dumps the BDD DAG as it is, vertex for vertex and
edge for edge. There is no work done in the area of data-set preprocessing to provide
more meaningful abstraction of data.

Layout of BDD dumps is easier than general graph layout. We know the level (or rank)
of all vertices to begin with. [Look at the dot algorithm and mention of the savings]
systems then layout the DAG according to the visual principles specified in the previous
section.

